Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2400639, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664988

RESUMEN

Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.

2.
ChemSusChem ; : e202400159, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581393

RESUMEN

Uneven lithium (Li) metal deposition typically results in uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and coulombic efficiency (CE) of Li metal batteries (LMBs), preventing their practical application. Herein, a novel carbon cloth with the modification of ZnO nanosheets (ZnO@CC) is fabricated for LMBs. The as-prepared ZnO@CC with a cross-linked network significantly reduces the local current density, and the design of ZnO nanosheets can promote the uniform deposition of Li metal as lithiophilic sites. As a result, the Li metal anodes (LMAs) based on ZnO@CC (ZnO@CC@Li) enables a long cycle life over 640 hours with a low overpotential of 65 mV at a current density of 4 mA cm-2 with a capacity of 1 mAh cm-2 in the symmetric cell. Moreover, when coupling the ZnO@CC@Li with a LiFePO4 cathode, the assembled full cell exhibits excellent long cycle and rate performance, highlighting its promising practical application prospect.

3.
Nano Lett ; 24(14): 4150-4157, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38529926

RESUMEN

Metallic Zn is considered as a promising anode material because of its abundance, eco-friendliness, and high theoretical capacity. However, the uncontrolled dendrite growth and side reactions restrict its further practical application. Herein, we proposed a ß-cyclodextrin-modified multiwalled carbon nanotube (CD-MWCNT) layer for Zn metal anodes. The obtained CD-MWCNT layer with high affinity to Zn can significantly reduce the transfer barrier of Zn2+ at the electrode/electrolyte interface, facilitating the uniform deposition of Zn2+ and suppressing water-caused side reactions. Consequently, the Zn||Zn symmetric cell assembled with CD-MWCNT shows a significantly enhanced cycling durability, maintaining a cycling life exceeding 1000 h even under a high current density of 5 mA cm-2. Furthermore, the full battery equipped with a V2O5 cathode displays an unparalleled long life. This work unveils a promising avenue toward the achievement of high-performance Zn metal anodes.

4.
Small ; 19(44): e2304094, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37386782

RESUMEN

Aqueous rechargeable zinc-based batteries (ZBBs) are emerging as desirable energy storage systems because of their high capacity, low cost, and inherent safety. However, the further application of ZBBs still faces many challenges, such as the issues of uncontrolled dendrite growth and severe parasitic reactions occurring at the Zn anode. Herein, an amino-grafted bacterial cellulose (NBC) film is prepared as artificial solid electrolyte interphase (SEI) for the Zn metal anodes, which can significantly reduce zinc nucleation overpotential and lead to the dendrite-free deposition of Zn metal along the (002) crystal plane more easily without any external stimulus. More importantly, the chelation between the modified amino groups and zinc ions can promote the formation of an ultra-even amorphous SEI upon cycling, reducing the activity of hydrate ions, and inhibiting the water-induced side reactions. As a result, the Zn||Zn symmetric cell with NBC film exhibits lower overpotential and higher cyclic stability. When coupled with the V2 O5 cathode, the practical pouch cell achieves superior electrochemical performance over 1000 cycles.

5.
Small ; 19(15): e2207742, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36610025

RESUMEN

In consideration of high specific capacity and low redox potential, lithium metal anodes have attracted extensive attention. However, the cycling performance of lithium metal batteries generally deteriorates significantly under the stringent conditions of high temperature due to inferior heat tolerance of the solid electrolyte interphase (SEI). Herein, controllable SEI nanostructures with excellent thermal stability are established by the (trifluoromethyl)trimethylsilane (TMSCF3 )-induced interface engineering. First, the TMSCF3 regulates the electrolyte decomposition, thus generating an SEI with a large amount of LiF, Li3 N, and Li2 S nanocrystals incorporated. More importantly, the uniform distributed nanocrystals have endowed the SEI with enhanced thermostability according to the density functional theory simulations. Particularly, the sub-angstrom visualization on SEI through a conventional transmission electron microscope (TEM) is realized for the first time and the enhanced tolerance to the heat damage originating from TEM imaging demonstrates the ultrahigh thermostability of SEI. As a result, the highly thermostable interphase facilitates a substantially prolonged lifespan of full cells at a high temperature of 70 °C. As such, this work might inspire the universal interphase design for high-energy alkali-metal-based batteries applicated in a high-temperature environment.

6.
ACS Appl Mater Interfaces ; 14(43): 48762-48769, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259605

RESUMEN

Regulating the structure and composition of the lithium-ion (Li+) solvation shell is crucial to the performance of lithium metal batteries. The introduction of fluorine anions (F-) into the electrolyte significantly enhances the cycle efficiency and the interfacial stability of lithium metal anodes. However, the effect of dissolved F- on the solvation shell is rarely touched in the literature. Herein, we investigate the evolution processing of the fluorine-containing solvation structure to explore the underlying mechanisms via first-principles calculations. The additive F- is found to invade the first solvation shell and strongly coordinate with Li+, liberating the bis(trifluoromethanesulfonyl) imide anion (TFSI-) from the Li+ local environment, which enhances the Li+ diffusivity by altering the transport mode. Moreover, the fluorine-containing Li+ solvation shell exhibits a higher lowest unoccupied molecular orbital energy level than that of the solvation sheath without F- additives, suggesting the reduction stability of the electrolyte. Furthermore, the Gibbs free energy calculations for Li+ desolvation reveal that the energy barrier of the Li+ desolvation process will be reduced because of the presence of F-. Our work provides new insights into the mechanisms of electrolyte fluorinated strategies and leads to the rational design of high-performance lithium metal batteries.

7.
ACS Nano ; 16(6): 9883-9893, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35593384

RESUMEN

The lithium metal anode (LMA) is regarded as one of the most promising candidates for high-energy Li-ion batteries. However, the naturally formed solid electrolyte interface (SEI) is unsatisfied, which would cause continuous dendrite growth and thus prevent the practical application of the LMA. Herein, a stable electrolytic carbon-based hybrid (ECH) artificial SEI is constructed on the LMA via the in-situ electrodeposition of an electrolyte sovlent at ultrahigh voltage. This nanostructured carbon strengthened SEI exhibits much improved ionic conductivity and mechanical strength, which enables uniform Li+ diffusion, stabilizes the interface between the electrolyte and lithium metal, and inhibits Li dendrite breeding and Li pulverization. With the protection of this ECH layer, the symmetrical cells show stable long-term cycling performance over 500 h with an ultrahigh plating capacity of 5 mAh cm-2 at the current density of 5 mA cm-2. A full cell assembled with a Li[Ni0.8Co0.1Mn0.1]O2 or LiFePO4 cathode exhibits a long-term cycling life and excellent capacity retention.

8.
Nano Lett ; 22(3): 1374-1381, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35060737

RESUMEN

The proliferation of lithium (Li) dendrites stemming from uncontrollable Li deposition seriously limits the practical application of Li metal batteries. The regulation of uniform Li deposition is thus a prerequisite for promoting a stable Li metal anode. Herein, a commercial lithiophilic skeleton of soybean protein fiber (SPF) is introduced to homogenize the Li-ion flux and induce the biomimetic Li growth behavior. Especially, the SPF can promote the formation of a LiF-nanocrystal-enriched interface upon cycling, resulting in low interfacial impedance and rapid charge transfer kinetics. Finally, the SPF-mediated Li metal anode can achieve high Coulombic efficiency of 98.7% more than 550 cycles and a long-term lifespan over 3400 h (∼8500 cycles) in symmetric tests. Furthermore, the practical pouch cell modified with SPF can maintain superior electrochemical performance over 170 cycles under a low N/P ratio and high mass loading of the cathode.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Nanopartículas , Proteínas de Soja , Electrodos , Litio/química , Proteínas de Soja/química
9.
Angew Chem Int Ed Engl ; 59(37): 15839-15843, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460362

RESUMEN

The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2 /S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm-2 . When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.

10.
Sci Adv ; 6(10): eaaz3112, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32181364

RESUMEN

The lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design "spansules" made of NaMg(Mn)F3@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ-formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites. As a result, the spansule-modified anode affords a high Coulombic efficiency of 98% for over 1000 cycles at a current density of 2 mA cm-2, which is the most stable LMA reported so far. When coupling this anode with the Li[Ni0.8Co0.1Mn0.1]O2 cathode, the practical full cell further exhibits highly improved capacity retention after 500 cycles.

11.
Nat Commun ; 11(1): 488, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980618

RESUMEN

Metallic lithium anodes are highly promising for revolutionizing current rechargeable batteries because of their ultrahigh energy density. However, the application of lithium metal batteries is considerably impeded by lithium dendrite growth. Here, a biomacromolecule matrix obtained from the natural membrane of eggshell is introduced to control lithium growth and the mechanism is motivated by how living organisms regulate the orientation of inorganic crystals in biomineralization. Specifically, cryo-electron microscopy is utilized to probe the structure of lithium at the atomic level. The dendrites growing along the preferred < 111 > crystallographic orientation are greatly suppressed in the presence of the biomacromolecule. Furthermore, the naturally soluble chemical species in the biomacromolecules can participate in the formation of solid electrolyte interphase upon cycling, thus effectively homogenizing the lithium deposition. The lithium anodes employing bioinspired design exhibit enhanced cycling capability. This work sheds light on identifying substantial challenges in lithium anodes for developing advanced batteries.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Animales , Biomineralización , Ingeniería Química , Microscopía por Crioelectrón , Cristalización , Cáscara de Huevo/química , Técnicas Electroquímicas , Electrodos , Litio/química , Sustancias Macromoleculares/química , Trifluoroetanol/química
12.
Chem Sci ; 10(32): 7484-7495, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31768234

RESUMEN

High energy density and low cost make lithium-sulfur (Li-S) batteries famous in the field of energy storage systems. However, the advancement of Li-S batteries is evidently hindered by the notorious shuttle effect and other issues that occur in sulfur cathodes during cycles. Among various strategies applied in Li-S batteries, using biomass-derived materials is more promising due to their outstanding advantages including strong physical and chemical adsorptions as well as abundant sources, low cost, and environmental friendliness. This review summarizes the recent progress of biomass-derived materials in Li-S batteries. By focusing on the aspects of carbon hosts, separator materials, bio-polymer binders, and all-solid-state electrolytes, the authors aim to shed light on the rational design and utilization of biomass-derived materials in Li-S batteries with high energy density and long cycle lifespan. Perspectives regarding future research opportunities in biomass-derived materials for Li-S batteries are also discussed.

13.
ACS Appl Mater Interfaces ; 10(20): 17240-17248, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29701452

RESUMEN

The metal-CO2 batteries, especially Na-CO2, batteries come into sight owing to their high energy density, ability for CO2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na2CO3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO2 batteries. The promotion of decomposition of Na2CO3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na2CO3 activation experiment to screen the efficient cathode catalyst for the Na-CO2 batteries. It is found that the Co2MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na2CO3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO2 batteries.

14.
Nano Lett ; 18(5): 3104-3112, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29692176

RESUMEN

High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg2B2O5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg2B2O5 and PEO-LiTFSI. Moreover, the interaction between Mg2B2O5 and -SO2- in TFSI- anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg2B2O5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g-1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg2B2O5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.

15.
ACS Nano ; 11(3): 2459-2469, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-27998055

RESUMEN

Two-dimensional transition-metal carbide materials (termed MXene) have attracted huge attention in the field of electrochemical energy storage due to their excellent electrical conductivity, high volumetric capacity, etc. Herein, with inspiration from the interesting structure of pillared interlayered clays, we attempt to fabricate pillared Ti3C2 MXene (CTAB-Sn(IV)@Ti3C2) via a facile liquid-phase cetyltrimethylammonium bromide (CTAB) prepillaring and Sn4+ pillaring method. The interlayer spacing of Ti3C2 MXene can be controlled according to the size of the intercalated prepillaring agent (cationic surfactant) and can reach 2.708 nm with 177% increase compared with the original spacing of 0.977 nm, which is currently the maximum value according to our knowledge. Because of the pillar effect, the assembled LIC exhibits a superior energy density of 239.50 Wh kg-1 based on the weight of CTAB-Sn(IV)@Ti3C2 even under higher power density of 10.8 kW kg-1. When CTAB-Sn(IV)@Ti3C2 anode couples with commercial AC cathode, LIC reveals higher energy density and power density compared with conventional MXene materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...